Modified mixed Ritz-DQ formulation for free vibration of thick rectangular and skew plates with general boundary conditions

نویسندگان
چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Free vibration analysis of orthotropic rectangular Mindlin plates with general elastic boundary conditions

In this investigation, a modified Fourier solution based on the Mindlin plate theory is developed for the free vibration problems of orthotropic rectangular Mindlin plates subjected to general boundary supports. In this solution approach, regardless of the boundary conditions, the plate transverse deflection and rotation due to bending are invariantly expressed as a new form of trigonometric se...

متن کامل

Free Vibration Analysis of Moderately Thick Orthotropic Functionally Graded Plates with General Boundary Restraints

In this paper, a modified Fourier series method is presented for the free vibration of moderately thick orthotropic functionally graded plates with general boundary restraints based on the first-order shear deformation theory. Regardless of boundary restraints, displacements and rotations of each plate are described as an improved form of double Fourier cosine series and several closed-form aux...

متن کامل

Rayleigh-Ritz Method For Free Vibration of Mindlin Trapezoidal Plates

In the present paper, the free vibration of moderately thick trapezoidal plates has been studied. The analysis is based on the Mindlin shear deformation theory. The solutions are determined using the pb-2 Rayleigh-Ritz method. The transverse displacement and the rotations of the plate are approximated by Ritz functions defined as two dimensional polynomials of the trapezoidal domain variables a...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Applied Mathematical Modelling

سال: 2013

ISSN: 0307-904X

DOI: 10.1016/j.apm.2013.02.040